إذا كانت الدوال المثلثية معرفة بدلالة الهندسة، إلى جانب تعريفات والمساحة ، يمكن إيجاد مشتقاتها من خلال التحقق من | عندما تكون الكتلة في أعلى موضع لها عند النطقة أ ، فإن سرعتها تساوي صفراً و تكون الكتلة تحت تأثير مركبة الوزن وجاθ م فإنها تعمل على نفس خط قوة الشد في الخيط |
---|---|
حركة توافقية بسيطة كتلة على زنبرك وحركة على دائرة من أفضل الأمثلة للحركة التوافقية البسيطة هو الكتلة المثبتة في زنبرك | في الصورة "مركبات الحركة الدائرية" يكون الجسم في النقطة هـ فإنه يقطع المسافة ص على المحور الصادي |
هي نوع من المعادلات التي تحتوي على قيم الدوال المثلثية ، ، أو مقلوباتها بحيث تكون احدى زوايا المعادلة مجهولة ويحل هذا النوع من كباقي المعادلات العادية وبطرق التحليل المعروفة.
12يتكون الرقاص البسيط من كتلة مربوطة بخيط مثبت في حامل أفقي كما في الشكل صورة "الرقاص البسيط" | أولا عند التحرك بعيدا عن مركز الأتزان يتم بذل قوة لإعادة النظام مرة أخرى إلى وضع الأتزان، القوة المبذولة تتناسب طرديا مع الأزاحة التي يقوم بها النظام، والمثال الذي تناولناه الكتلة المثبتة بالزنبرك يحقق السمتان |
---|---|
و إذا لم تفقد الكتلة طاقتها ستستمر في الاهتزاز، لذا فهي حركة دورية تتكرر كل فترة زمنية وسنوضح بعد ذلك أنها حركة توافقية بسيطة |
عامة أي نظام يتحرك بحركة توافقية بسيطة يحتوي على سمتان رئيسيتان.
} الزمن الدوري للبندول البسيط لا يعتمد على كتلة الثفل المعلق وانما يتناسب طرديا مع الجذر التربيعي لطول خيطه | } الزمن الدوري للبندول البسيط لا يعتمد على كتلة الثفل المعلق وانما يتناسب طرديا مع الجذر التربيعي لطول خيطه |
---|---|
إن القوة المؤثرة على الجسم تكون دائماً بإتجاه المركز و لنفرض أن هذه القوى تساوي ق م، نحلل هذه القوة إلى مركبتين متعامدتين ق ص، ق س | و ينطبق الحديث نفسه على مسقط حركة الجسم على المحور السيني، أي أن الحركة في الإتجاه السيني هي أيضاً حركة توافقية يسيطة |
و عندما تترك الكتلة فإن الزاوية θ تتناقص حتى تصبح صفراً في الوضع الرأسي، ثم تبدأ بالزيادة حتى تصل إلى أكبر قيمة θ م عند النقطة ب في الجهة المقابلة.